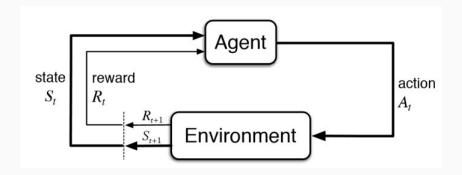
Aristotle University of Thessaloniki Department of Informatics

DEEPBOTS: AN EASY-TO-USE DEEP REINFORCEMENT LEARNING FRAMEWORK FOR ROBOTICS

M. Kirtas, K. Tsampazis, N. Passalis and A. Tefas
{eakirtas, tsampaka, passalis, tefas}@csd.auth.gr

Deep Reinforcement Learning and Robotics

Needs in DRL using simulators


Deepbots Framework / Deepworlds

Conclusion

DEEP REINFORCEMENT LEARNING AND ROBOTICS

Deep Reinforcement Learning is a fruitful domain of Machine Learning:

- $\cdot\,$ High impact in the academic community and industry
- · Employed in a great variety of problems
- · Deals with **multidimensional and delicate tasks**

Despite the potential of DRL in robotics, it is facing some **limitations**:

- · Enormous amount of time to explore the environment
- · Endangering expensive robot hardware
- · Difficult to build complicated environment

Can be overcome by using robotics simulators with:

- · Realistic physics
- · Photo-realistic scenes
- · Easily adjustable to user's needs
- · Can simulate time at **accelerated speeds**

Simulators are powerful tools but it is **not straightforward to interface** with DRL methods:

- · Steep learning curve
- · DRL operates over a higher level of abstraction
- · Introduces development overhead in DRL pipeline

Considerably restricts their usefulness for researchers and students.

NEEDS IN DRL USING SIMULATORS

Dealing with DRL tasks in simulators requires:

- \cdot Interpretable results
- · Benchmarking ability
- · Problem-generic agents
- · Easy interfacing

OpenAl gym **provides**:

- \cdot Standardization
- $\cdot\,$ Most RL agents interface with gym
- · A variety of environments
- · Easy use

However it comes with some limitations:

- · Unrealistic scenarios
- Difficult to extend those scenarios
- · Based on closed source MuJoCo simulator

Webots is a state-of-the art robot simulator which, among others, **provides**

- · Customizable environments
- · Wide variety of robots
- · Extendable physics engine
- · High fidelity simulations with realistic graphics

However Webots is not so friendly for those with DRL background

DEEPBOTS FRAMEWORK / DEEPWORLDS

Standardization

Interface with RL agents

Environment variety

Easy to use

deepbots

Open source

Customizable environments

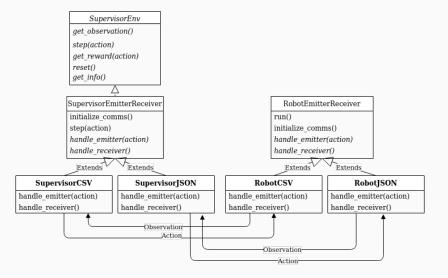
Wide variety of robots

Extendable physics

Realistic graphics

OpenAl gym

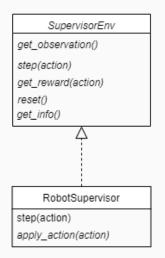
The **deepbots framework** is an **open-source** project that aims to:


- Facilitate and guide development helping the user create a gym-style environment for their problem
- $\cdot\,$ Act as an interface between the environment and Webots
- Hides standard Webots functions that are irrelevant to the problem enabling users to **focus on their task**
- Create an open-source ecosystem with ready-to-use environments for **benchmarking** RL algorithms

DESIGN

RL Agent Backend (TensorFlow, PyTorch, etc.) RL algorithm, model(s) deepbots Problem-specific gym-style environment Interface Webots World, Robot(s) Simulation, Graphics, Physics

Deepbots uses a hierarchy of abstract or partially abstract classes to:


- Combine a gym-style environment with functionality needed by Webots
- $\cdot\,$ Provide implementations of common functions
- Be customizable depending on the use-case by overriding or adding functionality to methods

By separating the Supervisor from the Robot, the first scheme offers the following advantages:

- \cdot Flexibility to fit any use case
- Support for distributed experience acquisition by several Robots controlled by a centralized agent
- Robot is highly realistic, without having access to any additional information other than from its sensors

However, emitter-receiver communication introduces an overhead, both in execution speed and development time.

By combining the Supervisor and the Robot on a single class, the second scheme offers the following advantages:

- $\cdot\,$ Overcomes the emitter-receiver communication overhead
- Can be used with high-dimensional or long data, e.g. camera images
- · Easier to implement, no communication methods to implement

However, Robot needs supervisor privileges becoming unrealistic and is limited to one-to-one Robot-Supervisor setups.

- Deepbots is distributed as an easy-to-install Python 3 package: **pip install deepbots**
- Accompanying repository, deepbots-tutorials, contains tutorials to help new users: https://github.com/aidudezzz/deepbots-tutorials
- Currently contains a step-by-step tutorial for recreating the well-known Cartpole problem

Deepbots is designed to be extensible via environment wrappers.

- · Basic wrappers are provided, like a tensorboard logger wrapper
- More wrappers with additional features can be contributed by the community

The deepworlds repository contains

- Webots worlds implementing well-known problems that act as benchmarking environments, much like gym's environments
- Example worlds with solved problems, using established RL algorithms

DEEPWORLDS EXAMPLES

(a) CartPole

(b) PitEscape

(c) FindTarget

These are solved using the Proximal Policy Optimization (PPO) and Deep Deterministic Policy Gradient (DDPG) algorithms, using PyTorch as a backend.

DEEPWORLDS EXAMPLES

(a) CartPole

(b) PitEscape

CONCLUSION

The deepbots framework:

- Aims to bring the Deep RL and Robotics community together in a standardized ecosystem
- Bring a highly customizable simulator closer to the DRL community
- · Help students delve into DRL, or DRL in robotics, easily

CONCLUSION

www.github.com/aidudezzz/deepbots

🖟 aidudezzz / deepbots		 Unwatch 	h ≠ 3 🛊 Unstar 47 ¥ Fork 15	
<> Code ① Issues ④ □□ Pull reque	sts 🕞 Actions 🖽 Wiki 🕕 Security 🗠 Insights 🛞 Setting	IS		
₽ master → ₽ 2 branches ♦ 14 tags	Go to file Add file *	± Code +	About 🛞	
S ManosMagnus Release v0.1.2 🗸 e90d110 on Sep 9		🕲 84 commits	A wrapper framework for Reinforcement Learning in Webots	
.github/workflows	Fix release-on-merge-master.yaml	7 months ago	simulator using Python 3.	
🚞 deepbots	get-default-observation now returns NotImplementedError instead of be-	2 months ago	robotics reinforcement-learning	
all doc/img	Add README file	10 months ago	openai-gym-environment webots	
	Fix gitignore	7 months ago	python	
isort.cfg	Pre-release v0.0.1-pre	7 months ago	Readme	
.pre-commit-config.yaml	Release on merge yaml	7 months ago	費a GPL-3.0 License	

www.github.com/aidudezzz/deepworlds

🖟 aidudezzz / deepworlds		⊙ Unwatch ▼ 2	🛊 Unstar 10 😵 Fork	4
<> Code (1) Issues (4)	Pull requests 🕞 Actions 🖽 Proje	ects 🖽 Wiki 🕕 Security	🗠 Insights	
१ master → १ 2 branches 중	O tags Go to file	Add file ▼ 💆 Code ▼	About	鐐
ManosMagnus Merge branch 'o	dev' dic6	471 on Sep 5 🕚 52 commits	Examples and use cases using the deepbots framework (https://github.com/aidudezzz /deepbots) with the Webots robot simulator.	
📄 examples U	Jpdate README	2 months ago		
.gitignore In	nitial commit	12 months ago		
	nitial commit	12 months ago	Readme	
README.md	Jpdate README	2 months ago	ধার GPL-3.0 License	

This work was supported by the European Union's Horizon 2020 Research and Innovation Program (**OpenDR**) under Grant 871449. This publication reflects the authors' views only. The European Commission is not responsible for any use that may be made of the information it contains.

Project Site: https://opendr.eu

Thank you!

Questions?